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ABSTRACT

Random variables X1, ..., X are said to have a joint distribution with

Weibull minimums after arbitrary scaling if min(a
i
X
i
) has a one dimensional

Weibull distribution for arbitrary constants a.>0, i = 1, ..., ii. Some

properties of this class are demonstrated , and some examp les are given which

show the existence of a number of distributions belonging to the class. One

of the properties is found to be useful for computing component reliability

importance. The class is seen to contain an absolutely continuous Weibull

distribution which can be generated from independent uniform and gamma distri—

butions.

Key words and phrases : multivariate Weibull distributions , Weibull minimums

af ter arbitrary scaling, hazard gradient , component reliabili ty importance ,

Gumbel’ s distribution .
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1. INTRODUCTION

In the following F(x) = P(X
1
>x1, ..., X5

>x) is the survival function of

non—negative random variables X1, ... , X and R = —log F is the hazard function

which is non—decreasing and defined for non—negative x.

The Weibull distribution , F(x) = exp(_kxa), x>O , has become an important ,

often used , model for lifelength. Several multivariate extensions have been

suggested ([7], [8], [11]). However, the extensions appear to have little in

common with the univariate Weibull distribution except that the marginal

distributions are Weibull. An exception is the Weibull distribuion mentioned

by Marshall and 01km [11], and also discussed in [9], which has the following

form :

aF(x) — exp (—E A~ max (x1
) ) ,  x>O (1.1)

J iEJ

with ci>0 and XfO for J J  where the sets J are elements of the class J of non—

empty subsets of {l , ..., n} having the property that for each 1, i~J for sone

J1J. For cz=l , (1.1) is the Marshall—Olkin [11] multlvariate exponential distri-

bution .

The purpose of this paper is to develop some properties of the class of

multivariate distributions having Weibull minimums after arbitrary scaling .

RAndom variables X1, ..., X have such a distribution if for arbitrary constants

i=l , ..., n, min(aiXi
) has a one dimensional Weibull distribution ,

i

P(min(a
i
X
i
)> t) — exp(—k(a)tm), t> 0 (1.2)

i

for some a>O and constant k(a)>O. The Weibull distribution (1.1) belongs to this

class, as do a number of other distributions which are presented in the next

section.
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A closely related subclass of distributions satisfying (1.2) are distri-

butions having exponential minimums after arbitrary scaling . Esary and Marshall

[5] discuss this class and other classes of exponential distributions, and their

application to computing system reliability.

• The following section contains examples and comparisons of various classes

of Weibull distributions which show that distributions satisfying (1.2) are

distinct from other classes of Weibull distributions . In later sections failure

rate, dependence , and distributional properties of this class are presented .

A useful application is made to computing the reliability importance of system

components. The final section is concerned with genera ting an absolu tely

continuous Weibull distribution (which satisfies (1.2)) from independent random

variables, and the effect of the parameters on the covariance.

2. CLASSES OF WEIBULL DISTRIBUTIONS

To clarify differences between distributions satisfying (1.2) and other

classes of multivariate Weibull distributions it is helpful to consider a

hierarchy of classes of multivariate Weibull distributions .

Consider random variables X1, ... , X having a joint distribution which

satisfies one of the following conditions.

(a) X1, ~~~~~~ 
X
n 

are independent and each X1 has a Weibull distribution

of the form F1
(t) = exp(_A

i
ta), t>0, i=l , ..., n.

(b) X1, . . ~ Xn have a multivariate Weibull distribution generated from

independent Weibull distributions by letting

X1 
— min(Z~ : iJ), i=l, ...,

where the sets J are elements of a class .1 of nonempty subsets of

{l, . .. , n} having the property that for each i, i€J for some JEJ,
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and the random variables ~~ J’J , are independent having Weibull

distributions of the form~~~ (t) exp(_X~t
a).

(c) X1, ..., X have a joint distribution satisfying (1.2).

(d ) X
1
, ..., X have a joint distribution with Weibull minimums, that is,

P(min(X
1
)>t) exp(_A

5t
a
)

It S

for some As>O and all nonempty subsets S of (1 , ..., n}.

(e) Each X~, 1—1 , ..., n has a Weibull distribution of the form

F
i
(t) = exp(_A

i
ta).

The classes a—e contain the corresponding classes of multivariate exponential

distributions cons tructed by Esary and Marshall [5]. Each class satisfies certain

multivariate closure properties similar to those that they describe . See their

properties P1, P2, P3 and P4. Also each class a—e is a subclass of the one

which follows it.

The condition (b) is an alternative and equivalent way to describe the

distributions of (1.1). The representation of (1.1) in terms of independent

random variables is discussed in [9].

The examples which follow show the classes a—e are distinct since each

class is seen to contain distributions not belonging to the class preceeding it.

Example 2.1. Let F(x 1,x2) 
= exp [— (A

1
x~ ÷ A

2x~ + A
12 ax(x~ ,x~)] with

A
2
>O , A 12>0 and a>O. This is the bivariate version of the multivariate distri-

bu tions satisf ying (b). This distribution occurs if X1 — min(Z 1, Z12 ) and

X2 
— inin(Z

2
,Z12) where Z~ , Z2, 212 are independent with Weibull distributions

P(Z1
>t) = exp(—A

1
t~ ), P(Z2

>t) exp(_A
2t
a), P(Z 12>t) exp(_A

12t
a). If

then the joint distribution of X11 X2 satisfies (b) but not (a).

Example 2.2. Let X1,X2 have the joint distribution of example 2.1 and let

Y1 
— c~~X1, with c~

>O , I’1 ,2. Then ~(y1,y2) — [—(A 1c~y~ + A 2c~y~

1

• 
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+ A 12 max(c~y~ ,c~y~)]. The distribution of Y1,Y2 has a singular

component on the line c
1 

y1 
= c

2 
y 2 .  Thus it differs from the distributions

satisfying (b). If c
1~

c
2 

the joint distribution of Y
1 

and Y
2 satisfies (c) but

not (b).

Example 2.3. C(x1,x2) exp[—(x~+x~)~~I satisfies (c) but not (b). In a later

section it is shown that this distribution can be generated by a transformation

of independent random variables. G(x1,x2
) is absolutely continuous and therefore

cannot satisfy (b). That it satisfies (c) can be verified by computing

P(mln(a
1
X1)>t) exp [—t2(a~

4 
+ a

4
)~~], t>O , fo r  a

1
>O , i=l ,2.

Example 2.4. Let H(x1,x2
) G(x1,x2

)F(x1,x2
) where F is the distribution of

example 2.1 with cx=2 and G(x
1,
x
2
) is the distribution of example 2.3. H(x1,x2

)

is not absolutely continuous and satisfies (c) but not (b).

Example 2.5. Let X1,X2 
have the distribution C(x1,x2) of example (2.3) and let

have the distribution F(y1,y2) = exp[-(2y~ + ~~~~~~~ Let (T1,T2) 
= (X 1, X

2
)

w i t h  p robab i l i ty  p and (T1,T2) 
= (y 1,Y2

) w i t h  p robab i l i t y  1-p. Then T1, T 2 have

the distribution of the mixture H(t1,t2) = p G(t1, t2
) + ( 1 — p ) F ( t

1, t 2 ) .  The

distribution H satisfies (d) but not (c).

Example 2.6. Let ~(x1,x2
) = ~1

(x
1)~2(x2

)[1 + y(1-~1(x1
))( l-~2(x2

))] where

F~(x~) exP (_x~
i )4 cfO~ xj

>O~ .j=l ,2 are univariate Weibull distributions.

This bivarlate Welbull distribution is mentioned in [7] as a special case of

the Morgenstern , Gumbel , Farlie distributions . It satisfies (e) when c1 c2,

but does not satisfy (d).

In summary , the class of Weibull distributions (1.2) contains independent

Weibull distributions satisfying (a) and the class of Weibull distributions (b)

arising from the Marshall—Olkin [ii] models. Examples (2.2), (2.3) and (2.4)

L — ~~~~
. __________ —— . -,.
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show the existence of other Weibull distributions satisfying (1.2) which are

distinct from the classes (a) and (b).

3. PROPERTIES OF DISTRIBUTIONS HAVING WEIBULL MINIMUMS
AFIER ARBITRARY SCALING

In the present section it is assumed that F(~ ) 
= exp(—R(~)) is a continuous

function of x, but not necessarily absolutely continuous , and that the hazard

gradient , r .(x) = -
~~

-
~~-— R(x), j l, ..., n exists except possibly on a finite set

of values of x . Further , it is assumed that r .(x) is a continuous function ofj

X
j 
with the exception of the points where it fails to exist.

It follows that the survival function can be recovered by integrating in the

following way ,

f~ r.(x1,. . . ~x . ~~~~~~~~~~ ,x )F(x1,. . . ,x~ 1,t,x1+1,.. . ,x )dt (3.1)

= F(x).

The equality holds irrespective of the way r
j(& 

is defined at its discontinuity

points. However, to express the results of this section we let rj
(~ ) represent

the right hand derivative which is assumed to exist for all x.

Absolutely continuous distributions satisfy such conditions as do also the

multivariate Welbull distributions satisfying (1.1). For the distribution (1.1),

F(x) is a continuous furt~tIon of x and r (x) = E A ,~ cz x’~~
’I~(~) where I~(& 

= 1
j J ~1

(and zero otherwise) if jEJ and x
j
>max{xj: iEJ and i~i}. It is seen that r

j(&

is continuous in x~ except on a finite set of values and can be defined at the

exceptional values by the right hand derivative.

The hazard gradient is useful for describing failure rate properties of

multivariate distributions. In [71 it is shown that r~(~) can be interpreted as

the failure rate of the conditional distributions of X~ given that X~>x~ , i~j,

1—1 , ..., n. It reduces to the usual concept of failure rate when the distribution

L . . - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k • ____ • -~~~~~~~~~~~ 
—
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- 

____________________________ _____________



- .• • . • —

6

involves independent random variables. Further discussion of the hazard gradient

is given in [10].

A distribution F satisfies (1.2) if and only if the hazard function satisfies

the following functional equation:

R(tx) = ~
aR(X) for some

(3 .2)
a>O whenever t>O and x>O.

Equation (3 2) is the basis in this section for developing properties of distri-

butions having Weibull minimums after arbitrary scaling .

Theorem 1. Let X1, ..., X have a joint distribution satisfying (1.2) with cz>O

given by (1.2) and having the hazard gradient r (x), j=l , ..., n. Then

a. r~ (t~) t
~~

1r~(&~ j=l, ..., 
n for all vectors x>0 and scalar t>O.

b. r
j(& 

is nonincreasing in x~ for i~j, i l , ... , n.

c. rj(~S) 
is nondecreasing in X

j~ ~=l~ ..., n providing a>l.

Proof: a. Using (3.2) write R(x) = x R(lj, x~~x) where the notation (lj, xij
1x)

represents a vector with a one in the jth position and the remaining elements

hay: been multiplied by the scalar x~
1. For i~j, ri(x) = x~ -~~ - R(1j,x~~x)

= x~ r1
(lj,x . x). Therefore , ri(tx) (tx~ ) r~ (lJ 4x~ x) — t r

i
(x) , for any

x>O and t>O.

b. First observe from (3.2) that -
~~~~-— F(tx) — tar (x)F(tx) for t>O. Since
X
j 

j

— t~~~ -~-~-- F(tx) is non—increasing in x1, 
for i~j, and all t>O , and since

j
—au r n  —t -

~~
--— F(t~ ) r 1(~), we have that r ,(~) is non—increasing in x 1 for ~~~

t+O+ X j  j

c. From part a, rj
(~) — x 1r~(1J~x~~~). Also from part b , r~(lJ~x~

’x) is non—

decreasing in and since by aasumption a>1 , it follows that rj (x) is non—

decreasing in

L •: 
— •  • •~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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As pointed out in references [21 and [4] a form of positive dependence is

likely to be a reasonable assumption for many reliability problems. For random

variables X1, ~~~ 
X
n 
satisfying (1.2), part b of the theorem can be used to

show that each subset S of the variables is right tail increasing (See [4] for

a discussion of right tail increasing) in the remaining set S. That is, the

conditional probability

P(X.>x ., i~ S~X~ >Y~ 4 j~ S) = exp [—R(x ,v)+R(O,Z)]

is nondecreasing in y., jtS. From part b we have -
~~

-
~
--- R(x,~~) is nonincreasing in

a
x .. Therefore, -i-— R(x,y) < - s---- R(O,y), which says that R(x,y)—R(O,y) is non—

3
increasing in y~ , jES. This proves right tail increasing for distributions (1.2).

For a second application consider X1, ..., X satisfying (1.2) with a>l.

This corresponds to min(a
1
X
1
) having a one dimensional IFR (increasing failure

I
rate) Weibull distribut ion for each choice of constants a

i
>O , 1=1, ..., n. Part c

of the theorem shows that the distributions (1.2) have the property that Johnson

and Kotz [7] call multivarlate IHR (increasing hazard rate).

Next consider V = min(X
1
) and define the event that X . coincides with V by

i

X . = V < - -“ X <min(X .). (3.3)
1

Since for distributions satisfying (b) of section 2 there is positive probability

of tied values , it is important to note when computing P(X. V) that equality is

allowed In (3.3).

To develop a special property of distributions satisfying (1.2) let us

write

P(X~—V and V>x) = f ~ P(min(Xi)>t (X ~‘t)f (t)dt (3.4)
x j

~j 
j j

since the density f~ (t) of X~ exists for distributions (1.2).

-

I 

. 

. .•~~~~~~~~~~~~~~~
—

~~~~~~
-
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The integrand in (3.4) is equal to

lim ic
1
P(min(X .)>t and t<X <t+i~)1 j

r .(t , - . - , t)F(t, . . . , t). (3.5)

The integrand is also equal to

P(X . V~V t)g(t) (3.6)

d —
where g(t) = —

~~~~~~
- F(t, ..., t) is the density function of V. Equating (3.5) and

(3 .6)  gives the conditional probability,

P(X. V IV t)=r .(t , ~~~~~., t)F(t, ..., t)[g(t)]~~ (3.7)

The following theorem extends a property of the Marshall—Olkin [11] distri-

bution (see [21) to the class of distributions having Weibull minimums after

arbitrary scaling.

Theorem 2. Let X1, ..., X have a joint distribution satisfying (1.2) with hazard

gradient r
j
(x) computed as the right hand derivative . Then V is independent of

the events X~~V~ j l , ...~~ n and P(X~~V) = r
j
(l. - - - ,  l)/aR(1, ..., 1).

Proof: Since for distributions satisfying (1.2), g(t) = O~
a l R(l, ..., l)~~(t, . . . ,  t),

and from theorem 1, part a, r~ (t~ ..., t) = t~~
1
r .(1, - . - ,  1) it is seen that (3.7)

simplifies to r~ (l~ .., l)/ctR(l, ..., 1). Therefore , P(X. V JV t) is constant in

t which proves the independence of V and X~=V.

4. APPLICATION - COMPUTING COMPONENT RELIABILITY IMPORTANCE .

Let t (X) represent the life length of a coherent system having minimal path

sets P1, ..., P and suppose X1, X2, ~~~ 
X
n 

represent component life lengths .

Then -r(~) max (r
j
) where T

j 
_ mm (X ),  j l , ..., p. This representation

j—l ,. . . ,p m€ P~ 
m

of system life length in terms of minimal path sets is discussed in [2]. 

__
~__~~

_
~1• ~~~~~~~~~~~~~~ ~~~--r~-~ ~~
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Barlow and Proschan [3] define their measure of a component ’s rel iability

importance as the probability that component lifelength coincides with system

life length. If this event occurs the component is said to cause the system to

fail. Since

max
1 

j=l ,...,p ~

is the probability of the union of p even ts , the importance measure can he

expressed as fcllows:

p p
P(X

1 
= r ( X ) ) = ~ P(T . X

1
) — P(min(r ‘k~ 

= X .)
j=l ~ j,k=l;j#k 

j~ 1

+ - . . + P(min(r 1, . . . , r )  X
i
). (4.1)

Barlow and Proschan [3] express their formulas for the importance measure in

terms of the system reliability function for the case of independent component

life lengths , and do not mention (4.1).

Noting that min(T ., r
k
) = mm (X ),  and so on , it is seen that each term

m tP .uP m
j k

of the various sums reduces to computing probabilities like those expressed in

theorem 2. Note also that if ifP
j
uP
k 

and if X1, X2, . . . ,  X have an absolutely

continuous distribution then P (min( -r . , -r
k

) = X
1) 

= P( mm (X) = X
1
) = 0.

m~ Pj
uP
k

Other terms may equal zero for the same reason .

To illus trate the application of theorem 2 for a two out of three system , let

X1, X2, X3 represent component life lengths having the joint distributions

F(x) = exp [—(x~ + 2x~ + 3X~~) ½]. A two out of three system fails when any two of

its components fail. System life length is T(X) = max [min (X1,X2
), min (X2,X ) ,

min(X1,X3)J . 
Using (4.1) it is seen that P(X

1 
= -t ( X) ) = P(X1 

= min(X1,X2
))

+ P(X
1 

min(X1,X3
)) — 2P(X

1 
min(X1,X2,X3

)),since the r~ i~ain ing terms become

zero for the reason mentioned above . From theorem 2 we have P(X
1 

= min(X1,X2))

= r1
(1 ,l,O)/R(l,l,O) — 1/3, P(X1 — min (X1, X3

)) = r
1
(l ,O ,l)/R(l,O ,l) = 

174, and

~~~~~~~ --~~~~~~~~ --—-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
-:

~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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P(X
1
=min (X1,X2,X3

)=r
1
(l ,l,l)/R(1,1,1) = 1/6. Thus the probability that

component 1~1 causes the system to fail is 
1/3 + 

1/4 
— 1/3 = 1/4. Similar compu-

tations would show P(X
2 

= r(X)) = 2i~ and P(X
3 

= 
~~~(~~~

))  =

5. AN ABSOLUTELY CONTINUOUS WEIBULL DISTRIBUTION

Consider the following bivariate Weibull distribution :

F(x1,x 2) expI- (~ 1
x~ + ~2x~ )~~] (5.1)

with A .>O , x .>O , i=l ,2, ~- - O and O~~ < J . This distribution has the properties

discussed in section 3. For ~~=i it reduces to Gumbel ’s [6] bivariate exponential

distribution and has several properties in common with the Marshall—Olkin distri-

bution , e.g., exponential marg inals , exponential minimums after arbitrary scaling

and the independence property discussed in theorem 2. The distribution easily

extends to n variables.

Let us show that random variables X1,X2 
having distribution (5.1) can be

represented in terms of independent random variables. Such a representation can

be useful for analyzing properties of the distribution and generating random

samples.

Consider the random variables

Z = A .X
8
, i=l ,2 (5.2)

and their joint distribution given by

C(z1,z2) 
= exp [—(z

1
+z

2)
1]. (5.3)

The joint density function is of the form

g(z1,z2) 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (5•4)

Consider next the transformation

U = z
1
/(Z

1
+Z

2
) (5.5)

S = (Z
1
+Z

2
)~

• 
•:L • —~~
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having the jacobian (lIy)S ~ -

The joint density of U and S is given by

h(u,s) = [(l—y)+ys]e 5 (5.6)

O<u<l , O<s<co. Thus U and S are independent random variables with U having a

uniform distribution on the interval (0,1) and the distribution of S is a mixture

of gamma distr ibu tions having the densi ty

h(s) = [l-y+ys]e
5
, s>O . (5.7)

In summary we have from (5.5) that

Z
1 

=

= (l-U)S~~
’
~ (5.8)

are represented in terms of independent random variables U and S.

It is an easy exercise to compute the covariance from the distributions of

U and S:

cov (z1,z2) = (l/~)F(2/~)-(l/~
2)~

2 (l/y) ( 5 . 9 )

where F(x) = f~ t
X_l

e
t
dt is the gamma function.

0
The covariance is non—negative .U~i ing formulas 6.1.2 and 6.1.18 for the gamma

function given in [1], it is possible to show that the covariance is decreasing

in ~ so that Z1 
and Z

2 
are more associated for y taking a value near zero . As

-
~ approaches one the covariance becomes zero . For y=l , and Z

2 
are independent

random variables.

—
~~~~~~~~~ • ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

—
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